锚栓连接受力分析方法
M.1 锚栓拉力作用值计算
M.1.1 锚栓受拉力作用(图 M.1.1-1 及图 M.1.1-2)时,其受力分析应遵守下列基本假定:
1锚板具有足够的刚度,其弯曲变形可忽略不计;
2同一锚板的各个锚栓,具有相同的刚度和弹性模量;其所承受的拉力,可按弹性分析方法确定;
3处于锚板受压区的锚栓不承受压力,该压力直接由锚板下的混凝土承担。
图 M.1.1-1 轴向拉力作用 图 M.1.1-2 拉力和弯矩共同作用
M.1.2 在轴向拉力与外力矩共同作用下,应按下列公式计算确定锚板中受力zui大
锚栓的拉力设计值 Nh
1 当N n - My1 2 3 0 时
yi
N h = N n + My1 yi2 (M.1.2-1)
2 当N n - My1 yi2 < 0 时
Nh = (M + N × l)y1 '( yi ')2 (M.1.2-2)
研究了碳纤维布加固混凝土梁的疲劳强度和变形特征,试验结果表明:与未加固梁相比,加固梁的挠度和制鑓宽度减小,混凝土梁的静载极限强度和疲劳极限强度都得到了提高,碳纤维布加固法与粘钢加固法一样能有效地提高混凝土梁的疲劳性能。
式中:N 和M —分别为轴向拉力和弯矩的设计值; y1 、 yi —锚栓l 及i 至群锚形心的距离;
y1' 、 yi' —锚栓l 及i 至zui外排受压锚栓的距离; l —轴力N 至zui外排受压锚栓的距离;
n—锚栓个数。
注:当外边距M = 0时,上式计算结果即为轴向拉力作用下每一锚栓所承受的拉力设计值 Ni 。
M.2 锚栓剪力作用值计算
M.2.1 作用于锚板上的剪力和扭矩在群锚中的内力分配,按下列三种情况计算:
1若锚板孔径与锚栓直径符合表 M.2.1 的规定,且边距大于10hef (图
M.2.1-1),则所有锚栓均匀承受剪力;
图 M.2.1-1 锚栓均匀受剪
2若边距小于10hef (图 M.2.1-2,a)或锚板孔径大于表 M.2.1 的规定值(图 M.2.1-2,b),则只有部分锚栓(以图中黑色者表示)承受剪力;
a)边距过小 b)锚板孔径过大
图 M.2.1-2 锚栓处于不利情况下受剪
3为使靠近混凝土构件边缘锚栓不承受剪力,可在锚板相应位置沿剪力方向开椭圆形孔(图 M.2.1-3)。
图 M.2.1-3 控制剪力分配方法
附表 M.2.1 锚板孔径(mm)
锚栓公称直径d 0 6 8 10 12 14 16 18 20 22 24 27 30
锚板孔径d f 7 9 12 14 16 18 20 22 24 26 30 33
M.2.2 剪切荷载通过受剪锚栓形心时,群锚中各受剪锚栓的验算(图 M.2.2):
ViV =
(VixV )2 + (ViyV )2 (M.2.2-1)
V V = Vx nx (M.2.2-2)
ix
V V = Vy ny (M.2.2-3)
iy
式中:VixV 、ViyV —分别为锚栓i 在 x 和 y 方向的剪力分量;
ViV —剪力设计值V 作用下锚栓i 的组合剪力设计值;
Vx 、nx —剪力设计值V 的x 分量及x 方向参与受剪的锚栓数目;
<国内外学者对锈蚀钢筋混凝土结构耐久寿命进行了很多研究,认为混凝土中钢筋的锈蚀发展过程分为四个阶段。当锈蚀程度达到t,所对应的程度时,一般认为结构不能在继续使用,使用寿命终止。所以混凝土结构因钢筋锈蚀的寿命过程分为三个阶段:**阶段锈蚀孕育期to,从浇注混凝土到钢筋开始锈蚀为止;*二阶段为锈蚀发育期t.,从钢筋开始锈蚀发展到混凝土保护层表面因钢筋锈胀而出现破裂;*三阶段为裂缝发展期t,从混凝土表面因钢筋锈蚀肿胀开始破坏发展到混凝土严重胀裂、剥落破坏,即达到正常使用极限状态。br /> Vy 、ny —剪力设计值V 的 y 分量及 y 方向参与受剪的锚栓数目。
图 M.2.2 受剪力作用
M.2.3 群锚在扭矩T 作用下,各受剪锚栓的验算(图 M.2.3):
ViT =
(VixT )2 + (ViyT )2 (M.2.3-1)
图 M.2.3 受扭矩作用
V T = T × yi (M.2.3-2)
xi2 + yi2
ix
V T = T × xi (M.2.3-3)
xi2 + yi2
iY
式中:T —外扭矩设计值;
VixT 、ViyT —T 作用下锚栓i 所受剪力的 x 分量和 y 分量;
ViT —T 作用下锚栓i 的剪力设计值;
xi 、 yi —锚栓i 至以群锚形心为原点的座标距离。
M.2.4 群锚在剪力和扭矩共同作用下,各受剪锚栓的验算(图 M.2.4):
Vi g =
(VixV + VixT )2 + (ViyV +ViyT )2 (M.2.4)
式中:Vi g —群锚中锚栓所受组合剪力设计值。
图 M.2.4 剪力与扭矩共同作用
北京博瑞双杰新技术有限公司专注于CGM灌浆料,二次灌浆,环保树脂胶泥等