实验名称:介电泳芯片分离海拉细胞
研究方向:介电泳
测试设备:信号发生器、ATA-2021B高压放大器、示波器、显微镜、微流控芯片、泵。
实验过程:
图:实验框图
实验所用的海拉细胞浓度为每毫升3e6个,注入样品的流量为0.08ml/h、0.10ml/h、0.12mI/h.施加的激励电压仍然为11Vpp、13Vpp、15Vpp,频率是600KHz。实验依旧通过细胞分离效率来分析芯片能。此外,数据统计的方式也和上一小节一样。为了探究双级芯片相比于单级芯片在同等条件下分离效率的提升,实验也对双级芯片的**级进行了数据采集,统计方式与*二级一样,并且利用高速显微相机分别对**级和*的出口处的实验现象进行了拍摄,如下图所示。
图:双级结构nDEP现象图
实验结果:
如上图所示,该现象图是在注入样品流量为0.08ml/h条件下拍摄的。(a)是**级出口上游部分,在施加激励以后大部分细胞受到较化作用被排斥到下层两侧,但由于细胞密度较大以及流速较快,斯托克斯力起了主导作用,因此仍有很多细胞在流道中间部分继续移动。(b)为**级出口处,可以看到大部分细胞在负介电泳力的作用下从两侧出口排出,但依然有很多细胞在斯托克斯拽力引导下从中间出口逃逸出去,进入到了*二级。(c)是*二级上游的分离情况,经过**级的分离,细胞浓度显著下降同时流速也降为原来的三分之一,因为在注入样品流量不变的情况下,经过**级出口后,体积流量减少为原来的三分之一。流速的减小,使得流体给细胞的的斯托克斯拽力大大减小,负介电泳力起到了主导作用,绝大部分细胞迅速的被排斥到下层侧壁,如图中(c)所示。图(d)是*出口处的现象图,可以看到几乎大部分细胞贴壁从下层两侧出口排出,同时分别对**级出口和*出口处的分离效率进行了统计,如下面两张图所示。
图:**级出口分离效率
由上图中可知,与单级芯片相比,随着电压的增加和下降,细胞的富集效率也会上升。在外加电压的不变的情况下,随着的增加分离效率也随之下降,在15Vpp,流量为0.08ml/h时,分离效率为82.2%,当流量提升到0.12m/h后,分离效率为74.9%,电压降到11Vpp时,分离效率为69.6%。由此可以看到,仅仅通过**级的分离很难达到理想的分离效果,接下来又统计了*二级的富集效率。下图表明,在0.08ml/h流量下,*二级的分离效率达到了93.7%,在0.1ml/h流量下,效率依然可以达到91.7%,由此可以看到相比于单级来说,在流速提高2.5倍基础上,分离效率依然可以保持在以上,与此同时,双级芯片实验中的细胞浓度也提高了5倍。因此,该芯片的级联设计是可以提高芯片本身的工作性能的。
图:*出口分离效率
安泰ATA-2021B高压放大器:
图:ATA-2021B高压放大器指标参数
本文实验素材由西安安泰电子整理发布。Aigtek已经成为在业界拥有广泛产品线,且具有相当规模的仪器设备供应商,样机都支持免费试用。
西安安泰电子科技有限公司专注于高压放大器,功率放大器,射频功率放大器,电压放大器,功率放大器模块,功率信号源,高精度电流源,高精度电压源等