IAI无尘室规格宽滑块型电缸CORETEC压力机
IAI无尘室规格宽滑块型电缸CORETEC压力机
IAI无尘室规格宽滑块型电缸CORETEC压力机
IAI无尘室规格宽滑块型电缸CORETEC压力机
IAI无尘室规格宽滑块型电缸CORETEC压力机
传统的机器人学研究认为,需要非常清楚要抓取的物体的三维几何形状,分析受力位置和力的大小,再反向计算机器手如何一步步移动到这些位置。但这种方式抓取不规则形状和柔性物体会很困难。例如毛巾,可能需要看成一系列刚体的链接,再进行动力学建模分析,但是计算量比较大。而小黄鸭那样的橡胶,外部并不能看出弹性程度,难以计算出需要施加的正确的力。
Pieter Abbeel、DeepMind和OpenAI关于机器人控制的研究,都以此深度强化学习为基础。基于强化学习进行机器人抓取,以机器视角看到的图像为输入,以机器较终抓到物体为目标,不断对机器进行训练,从而在不建模和不做受力分析的情况下,实现对物体的抓取。Pieter Abbeel已经展示过机器人叠毛巾,开瓶盖,装玩具等复杂的动作。
不过基于强化学习也仍有很多问题,如效率低、推理过程长、任务难以描述、不能终身学习、不能限度从真实世界获取信息等。其中一些通过meta学习,one-shot学习,迁移学习,VR示教等方法的引入得到了改善,有些则还暂时难以解决。
深圳市远创机械科技有限公司专注于电缸滑台,模组,机械手等