登录

行业资讯

YUKEN油研SVPF-12-20-20外形尺寸相对小

YUKEN油研SVPF-12-20-20外形尺寸相对小 使该腔压力迅猛升高,出现所谓酌“高压回流”,造成很大的压力冲击。每转过一个β角都如比重复-次。这种周期性的高压回流液压冲击不仅叶片泵输出流量和输出压力的脉动,重要的是造成定子环的径向振动,从而产生噪声.并加快定子内曲面与叶的磨损,对叶片泵的正常工作影响大。叶片泵越是工作在高压,上述闭死现象所造成的高压回流液压冲击也越严如果两叶片间的容腔是从压油区转向吸油区,例如在平衡式叶片泵的小圆弧阶段出现闭死时。cdef密闭容积内的油液处于等同于压油压力p,的高压。一旦接通吸油窗口,闭死容积内的高压油将在瞬间内向吸油腔,突然泄压,同样也对泵的正常工作不利,但闭死容积内储存的压力能有限且不是直接与泵的输出相通,高压回流影响程度较轻些。为了减轻闭死现象的不利影响,在配流盘窗口设计v形尖槽。配流窗口v形尖槽如图3-33所示。减缓高压回流液压冲击的v形尖槽应当开在排油窗口的进入端。当闭死容积离开吸油窗口之后,通过v形尖榴逐渐与排油窗口连通,随着转角的,v 形尖槽的通流截面积的逐渐增大而使两叶片间容的压力p逐步升高,直至接通排油窗口,才升压达到压油腔的压力p,。闭死容积的升压与v形尖槽的几何尺寸有关。当V形尖楷的横截面为等边三角形时,随着v形尖槽逐渐进入两叶片间的容腔,按节流作用和油液可压缩性计算出的闭死容腔压力P的升压如图3-34所示。其小,是v形尖槽的槽底倾角;φ是v形尖槽的范围角,φ是从尖槽算起的转角见图3-35>。v形尖槽所占的幅角在617l之间,具体数值要通过实验来确定,有些泵为了达到噪声的效果,宁可稍许容积效率,设计成V形尖槽跨入封油区若干度。压油窗口V形尖槽:平衡式叶片泵叶片当随着转子向前转动,一但接通排油窗口,由于压差悬殊,压油腔的高压油将在瞬间内反冲入两叶片间的容腔。使该腔压力迅猛升高,出现所谓酌“高压回流”,造成很大的压力冲击。每转过一个β角都如此重复- -次。这种周期性的高压回流液压冲击不仅叶片泵输出流量和输出压力的脉动,重要的是造成定子环的径向振动,从而产生噪声.并加快定子内曲面与叶的磨损,对叶片泵的正常工作影响大。叶片泵越是工作在高压,上述闭死现象所造成的高压回流液压冲击也越严重。因此在压油窗口设计v形尖槽,尖槽夹角由上面的计算知φ= 10l考虑安装方便,在两压油窗口两端均布置一V 形尖槽。吸油窗口V形尖槽:当叶片接通吸油窗口,闭死容积内的高压油将在瞬间内向吸油腔,突然泄压,同样也对泵的正常工作不利,但因为闭死容积内储存的压力能有限且不是直接与泵的输出相通,所以影响程度较高压回流轻些。

DSG-03-3C2-A110-N1-50,DSG-03-3-A110-N1-50,DSG-01-2B2-A220-50,

DSHG-10-3C2-T-D24-N1-50,DSHG-10-3-T-D24-N1-50,DSHG-04-2B2-T-A220-N1-50,

PV2R12-17-26-F-REAA-41,PV2R12-17-33-F-REAA-41,PV2R12-17-41-F-REAA-41,

A10-FR01B-12,A10-FR01C-12,A10-FR01H-12,PV2R1-19-F-RAA-41,

DSHG-06-3C2-T-A110-N1-50,DSHG-06-3-T-A110-N1-50,DSHG-10-2B2-T-A110-N1-50,

PV2R1-114-F-RAA-41,PV2R1-17-F-RAA-41,PV2R1-12-F-RAA-41,PV2R1-10-F-RAA-41,

MJCS-03BN,MPA-01-2-40,MPCV-03W,MPW-01-2-40,MPW-01-4-40,

MBP-03-H-20,MBR-01-C-30,MBRV-03-P-3-B,MFS-02A,MHB-01-H-3016,

PV2R12-31-53-F-RAAA-41,PV2R12-31-59-F-RAAA-41,PV2R12-31-65-F-RAAA-41,

YUKEN油研SVPF-12-20-20外形尺寸相对小

YUKEN油研SVPF-12-20-20外形尺寸相对小,因此,F;分力的存在对叶片泵的寿命和效率都很不利,设计上应设法尽量诚小其数值。在图3-3中,a是定子曲线点处法线方向与叶片方向的夹角,称为压力角,γ是定子与叶片的角。由图可见,各角度之间存在如下关系φ≈a-γ(3-3)因此,要使φ角为0应使压力角等于角γ。由此得出结论,定子曲线与叶片作用的压力角a等于角γ时.对叶片产生的横向作F,叶片与转子槽之间的相互作和磨损,所以压力角值app为Aop =arctg/=γ(3-4)当系数J。=0.13时,am=γ=7l。如图3-3所示,在叶片向方向前倾放置的情况下,吸油区定子与叶片作用的角a为a=ψ+θ(3-5)式中ψ为定子曲线点A处的法线与半径0A的夹角,θ为叶片的倾斜角,即叶片方向与半径方向0A的夹角。3.3.2叶片倾角的两种观点1>观点:平衡泵叶片应具有一定的前倾角0,观点认为,平衡式叶片泵的叶片应该向方向朝前倾斜放置。以往生产的大多数叶片泵亦按此原则设计制造,叶片前倾角其至达1014。这种观点的主要理由如图3-4a所示:定子对叶片作用的横向分力F, 取诀于法向反力F。和压力角a,即F=Fisina,为了使F尽可能沿叶片方向作用,以减小有害的横向分F,压力角a越小越好。因此令叶片相对于半径方向倾斜一个角度0,倾斜方向是叶项沿方向朝前偏斜,使压力角a小于ψ角,即a=ψ-0,否则压力角a=ψ将较大。2>新观点: 认为取叶片前倾角θ=0为合理影响压力角a大小的因素包括定子曲线的形状反映为ψ角的大小>和叶片的.倾斜角θ。实际上定子曲线各点的y角是不同的,转子中,要使压力角a在定子各点均保持值a=Qp=γ,除非叶片倾斜角0,能在不同转角时取不同的值,且与ψ保持同步反值变化,而这在结构上是不可能实现的。因此,叶片在转子上安放的倾斜角只能取一个固定平均合理值,使得运转时在定子曲线上有较多的压力角接近值aqp=γ。由计算机对不同叶片泵所作的计算表明,为使压力角a保持值,相府的叶片倾斜角0通常需在正负几度沿转子方向朝后倾斜为负>的范围内变化,其平均值接近于零度;加之从制远方便考虑,所以近期的叶片泵倾向于将叶片沿转子径向放置,即叶片的倾斜角θ=0。3.3.3我倾向的观点.新观点:叶片倾角为0.理由:观点是靠得出的值,而现代通过的计算机技术已经能计算解诀这类复杂问题,并通过计算证明了观点的错误。观点的错误还在于:1>在分析定子对叶项的作时未考感力F,的影响,计算有害的横向分力F,使不是以反作用合力F为依据,而是以法向反力F为依据,因而得出压力角a越小越好的错误结论。实际上由于存在力F ,当压力角a=0l时,定子对叶的反作用合力F并不沿叶片方向作用,即并非处于有利的受力状态,这时转子槽对叶片的反力和力并不为零。2>忽视了平衡式叶片泵的叶片在吸油区和压油区受力情祝大不相同,而且吸油区叶片受力较压油区严重得多的现实,错误地把叶片受力的着眼点压油区而不是吸油区。叶片向前倾角0,有利于成小压力角的结论实际上只适用于压油区。相反,由图3-4b 可见,在吸油区叶片前倾反而使压力角a增大,变为a=ψ+θ,使受力情况加恶劣。3.3.4叶片倾角方案选定综上,设计的平衡式叶片泵的叶片前倾角选择0 =0l。

DSG-03-3-A220-N1-50,DSG-01-2B2-D24-N1-50,DSG-01-2B3-D24-N1-50,

DSHG-06-3C2-T-A110-N1-50,DSHG-06-3-T-A110-N1-50,DSHG-10-2B2-T-A110-N1-50,

MRV-03B,MSA-01-X-50,M-01-X-30,M-02-X,M-06-X-30,

AR16-FR01B-20,AR16-FR01C-20,AR22-FR01B-20,AR22-FR01C-20,

DSG-03-2B3-D24-N1-50,DSG-03-3C2-D24-N1-50,DSG-03-3-D24-N1-50,

PV2R12-23-26-F-RAAA-41,PV2R12-23-33-F-RAAA-41,PV2R12-23-41-F-RAAA-41,

DSG-01-2B3-A220-50,DSG-01-3C2-A220-50,DSG-01-3-A220-50,

DSHG-04-3C2-T-D24-N1-50,DSHG-04-3-T-D24-N1-50,DSHG-06-2B2-T-D24-N1-50,

DSG-03-3-A220-N1-50,DSG-01-2B2-D24-N1-50,DSG-01-2B3-D24-N1-50,

YUKEN油研SVPF-12-20-20外形尺寸相对小

双作用叶片泵的工作原理如图所示为双作用叶片泵的工作原理。定子的两端装有配流盘,定子3的内表面曲线由两段大半径圆弧、两段小半径圆弧以及四段过渡曲线组成。定子3和转子2的中心重合。在转子2上沿圆周均布开有若干条(- -般为12或16条) 与径向成-一定角度(一般为13°) 的叶片槽,槽内装有可的叶片。在配流盘上,对应于定子四段过渡曲线的位置开有四个腰形配流窗口,其中两个与泵吸油口4连通的是吸油窗口;另外两个与泵压油口1连通的是压油窗口。当转子2在传动轴带动下转动时,叶片在离心力和底部液压力(叶片槽底部始终与压油腔相通)的作用下压向定子3的内表面,在叶片、转子、定子与配流盘之间构成若干密封空间。当叶片从小半径曲线段向大半径曲线时,叶片外伸,这时所构成的密封容积由小变大,形成部分真空,油液便经吸油窗口;而处于从大半径曲线段向小半径曲线的叶片缩回,所构成的密封容积由大变小,其中的油液受到,经过压油窗口压出这种叶片泵每转-一周,每个密封容腔完成两次吸、压油,故这种泵称为双作用叶片泵。同时,泵中两吸油区和两压油区各自对称,使作用在转子.上的径向液压力互相平衡,所以这种泵又被称为平衡式叶片泵或双作用卸荷式叶片泵。这种泵的排量不可调,因此它是定量泵。2.双作用叶片泵排量和流量图可知,泵轴转-转时,从吸油窗口流向压油窗口的体积为大半径为R,小半径为r,宽度为b的圆环的体积。因为是双作用泵,所以双作用叶片泵的排量为叶片体积对排量无影响。因为在压油腔,叶片缩回的体积补偿了叶片在压油腔所占的体积。叶片体积对排量无影响。因为在压油腔,叶片缩回的体积补偿了叶片在压油腔所占的体积。连成一体,形成了一个组合的密封工作腔。随着转子的匀速转动,位于大、小半径圆弧处的叶片均在圆弧上,因此组合密封工作腔的容积变化率是均匀的。实际上,由于存在制造工艺误差,两圆弧有不圆度,也不可能同心;其次,叶片有一定的厚度,又连通压油腔,叶片底槽在吸油区时,消耗压力油,但在压油区时,压力油又被压出,同样会造成了流量脉动。由理论分析和实验表明,双作用叶片泵的脉动率在叶片数为4的整数倍且大于8,故双作用叶片泵的叶片数通常取为12或16。3.双作用叶片泵结构特点(1)定子过渡曲线定子内表面的曲线由四段圆弧和四段过渡曲线组成(见图)的过渡曲线不仅应使叶片在槽中时的径向速度和加速度,变化均匀,而且应使叶片转到过渡曲线和圆弧交接点处的加速度突变不大,以减小冲击和噪声。目前双作用叶片泵--般都使用综合性能的等加速、等减速曲线或高次曲线作为过渡曲线。(2)叶片安放角如图所示,叶片在压油区工作时,它们均受定子内表面推力的作用不断缩回槽内。当叶片在转子中径向安放时,定子表面对叶片作的方向与叶片沿槽的方向所成的压力角β较大,因而叶片在槽内运动时所受到的力也较大,使叶片困难,甚至被卡住或折断。为了解决.这一矛盾,可以将叶片不按径向安放,而是顺转向前倾一个角度日,这时的压力角就是β°=β-θ。压力角的减小有利于叶片在槽内的,所以双作用叶片泵转子的叶片槽常做成向前倾斜-一个安放角日。

防尘防水等级ip65,不受外部磁场。本系列阀仅d24型ce认证。 适用于注塑机、工作机械等,需要安全性的油压机械。***:开关出厂时已完成位置设定;任意方向,可能造成感测部受阀轴撞坏而失效。可正确阀芯切换位置。採用非式、非接点式机件零磨耗,寿命特长。?可选择pnp或npn输出。?直接检测,感应迟滞小。?对液压油汁水分及污染度无特殊要求。防尘防水等级。不受外部磁场。开关出厂时已完成设定,任意方向可能造成感测部受连杆撞坏而失效。本阀由电液比例比例溢流阀和特定为低噪音研***的主阀组成。由于採用特殊缓衝机构,能使压力的控制加精密和。此阀视为液压平衡回路的,兼有减压和溢流功能的组合式压力控制阀。适用于工具机的主轴头配量,可空间及机台重量。 此阀视为液压平衡回路的,兼有减压和溢流功能的组合式压力控制阀。适用于工具机的主轴头配量,可空间及机台重量。卸载溢流阀用在蓄能油路或高低两压泵油路中,使泵的负载下运转。?遥控溢流阀主要用于液控压力控制阀(溢流阀,减压阀等)的遥控使用。溢流阀用来防止液压过载,并可用于保持液压的压力恆定。电磁换向阀直接安装在溢流阀上,并与溢流阀遥控口连通,压力可以由电磁线圈的电力遥控,令连接遥控溢流阀可实现两级或***的压力控制。?遥控溢流阀主要用于液控压力控制阀(溢流阀,减压阀等)的遥控使用。?溢流阀用来防止液压过载,并可用于保持液压的压力恆定。本电磁溢流阀由溢流阀和电磁换向阀组成。

YUKEN油研SVPF-12-20-20外形尺寸相对小

YUKEN油研SVPF-12-20-20外形尺寸相对小,这种溢流调速阀是一种节能型阀,它可为执行元件的工作提供必需的小压力和流量。由于此阀能根据负载压力,并使压差保持小来控制泵的压力,所以,是一种低能耗、节能、进油路节流式调速阀。 此外,这种阀具有温度补偿功能,能使控制流量而不受油液温度的影响。这是一种闭环控制的电液比例节能阀;闭环控制实现高应答、、(流量控制与压力控制),---流量从125l/min到600l/min共有4个机种,已完成系列化。本系列阀流量控制係採用新之小型比例电磁铁,配合线性位移检出器(lvdt)及压力检出器,直接剪出流量控制阀轴之位移与压力并回馈至控制系列中,的实现高应答、、的闭环控制。(流量回馈为配备,压力回馈为选配)?elfb(c)g-06採用大流量设计,---流量可达600l/min,外观大小及重量比阀小一级,对设备的小型化、轻量化有很大的帮助。本阀是採用装有两个比例线圈控制的比例方向、流量控制阀。?流量依据比例线圈输入的电流而改变,方向则利用其中一方比例线圈输入的电流所控制。?配合的,可同时实现方向与流量的控制,达到简化迴路,成本的目的。?本阀是採用装有两个比例线圈控制的电-液比例减压阀作为先导控制的方向流量控制阀。?流量依据比例线圈输入的电流而改变,方向则利用其中一方比例线圈输入的电流所控制。?配合的,可同时实现方向与流量的控制,达到简化迴路,成本的目的。此阀为针对油压式立体停车场而的多功能合阀,体积小,价位低,洩漏及小。(0.3cm3/min以下)

BSG-06-3C2,BSG-06-2B3A,BSG-03-2B3B,BSG-03-2B2B,BSG-06-3,

DSG-03-3C2-A110-50,DSG-03-3-A110-50,DSG-01-3C60-A220-50,

PV2R12-17-26-F-RAAA-41,PV2R12-17-33-F-RAAA-41,PV2R12-17-41-F-RAAA-41,

A10-FR01B-12,A10-FR01C-12,A10-FR01H-12,DSG-01-2B2-A220-N1-50,

DSG-01-2B2-A110-N1-50,DSG-01-2B3-A110-N1-50,DSG-01-3C2-A110-N1-50,

PV2R12-12-26-F-REAA-41,PV2R12-12-33-F-REAA-41,PV2R12-12-41-F-REAA-41,

DSHG-10-3C2-T-A220-N1-50,DSHG-10-3-T-A220-N1-50,DSHG-04-2B2-T-A110-N1-50,

A10-FR01B-12,A10-FR01C-12,A10-FR01H-12,DSG-01-2B2-A220-N1-50,

DSG-03-3-A220-50,DSG-01-2B2-D24-50,DSG-01-2B3-D24-50,

上一篇://hongke455678.cn.b2b168.com/shop/supply/227800609.html


苏州瑶佐机电有限公司专注于闽台油研,YUKEN日本油研电磁阀,节流阀等

免责声明: 八方资源网为互联网信息服务提供者,所有的信息均有发布者提供,如您发现信息有违规/侵权,请立即投诉举报

相关资讯

查看更多
资讯分类
商务服务 污水处理 机械 传媒 机床 五金 农业 工程机械 焊接切割 泵阀 热泵 农机 汽车 汽车用品 汽配 汽修 通信 电子 暖通空调 电气 广电 印刷 纸业 丝印特印 灯饰 安防 消防 过滤 耐火材料 环保 LED 添加剂 食品机械 仪器仪表 太阳能 包装 水工业 加工 二手设备 工艺礼品 古玩 服装 美容美发 服饰 制鞋 家电 家具 运动休闲 影音 酒店 家居 办公 音响灯光 农化 水果 养殖 皮具 教育装备 玩具 零食 食品 二手 IT 建材 小家电 卫浴 陶瓷 超硬材料 化工 橡胶 塑料 钢铁 表面处理 冶金 石油 能源 纺织 房地产 皮革 涂料 石材 创业 项目 生活服务 教育 船舶 维修 广告 交通运输 医疗 代理 物流 图片 展会 咨询 库存积压
八方资源网 资讯