登录

行业资讯

分享:RFID前端技术标准体系简述

分享:RFID前端技术标准体系简述
1.RFID*技术


RFID前端技术标准体系简述

图片来源网络,如有侵权请联系我们删除



RFID技术具有很多**的优点:实现了无源和免接触操作,应用便利,无机械磨损,寿命长,机具无直接对终用户开放的物理接口,能好地保证机具的安全性;数据安全方面除标签的密码保护外,数据部分可用一些算法实现安全管理,如DES、RSA、DSA、MD5等,读写机具与卡之间也可相互认证,实现安全通信和存储;总体成本一直处于下降之中,越来越接近接触式IC卡的成本,甚至低,为其大量应用奠定了基础;应用领域也非常宽,RFID技术已经在物流管理、生产线工位识别、绿色畜牧业养殖个体记录跟踪、汽车安全控制、身份证、公交等领域大量成功应用。



世界排名的零售商沃尔玛在2003年宣布,到2005年1月份时要求它前100大的供应商采用RFID技术,实现货品自动识别,以继续提高其供应链的管理能力。这也威胁到我国的零售商是否能继续销售自己的产品,因为有70%的货品都是由中国厂商生产的,可见RFID识别技术的发展已经自下而上地被推动。


另外,还有诸如Target、Tesco、FDA等也宣布了其使用计划。

2.RFID技术难点



2.1.RFID推广受标准问题困扰


目前,世界一些**公司各自推出了自己的很多标准,这些标准互不兼容,表现在频段和数据格式上的差异,这也给RFID的大范围应用带来了困难。


目前**有两大RFID标准阵营:欧美的Auto-ID Center与日本的Ubiquitous ID Center(UID)。前者的组织是美国的EPC环球协会,旗下有沃尔玛集团、英国Tesco等企业,同时有IBM、微软、飞利浦、Auto-ID Lab等公司提供技术支持。后者主要由日系厂商组成。


欧美的EPC标准采用UHF频段,为860MHz~930MHz,日本RFID标准采用的频段为2。45GHz和13。56MHz;日本标准电子标签的信息位数为128位,EPC标准的位数则为96位。


将RFID应用到供应链中还存在另外一些需要解决的问题,如读写设备的可靠性、成本、数据的安全性、个人隐私的保护和与系统相关的网络的可靠性、数据的同步等等,不解决好以上问题,肯定会制约RFID的进步,不过近RFID相关的高层会议接连不断,RFID技术的快速发展已呈燎原之势。


2.2.RFID技术标准面面观


通常情况下,RFID阅读器发送的频率称为RFID系统的工作频率或载波频率。RFID载波频率基本上有3个范围:低频(30kHz~300kHz)、高频(3MHz~30MHz)和高频(300MHz~3GHz)。常见的工作频率有低频125kHz与134。2kHz、高频13。56MHz、高频433Mhz、860MHz~930MHz、2。45GHz等。


RFID的低频系统主要用于短距离、低成本的应用中,如多数的门禁控制、校园卡、煤气表、水表等;高频系统则用于需传送大量数据的应用系统;高频系统应用于需要较长的读写距离和高读写速度的场合,其天线波束方向较窄且价格较高,在火车监控、高速公路收费等系统中应用。另外值得一提的是在供应链中的应用,EPC Global规定用于EPC的载波频率为13。56MHz和860MHz~930MHz两个频段,其中13。56MHz频率采用的标准原型是ISO/IEC15693,已经收入到ISO/IEC18000-3中。这个频点的应用已经非常成熟。


而860~930MHz频段的应用则较复杂,国际上各国家采用的频率不同:美国为915MHz,欧洲为869MHz,而我国由于被GSM、CDMA等占用,目前仍然待定。


目前常用的RFID国际标准主要有用于对动物识别的ISO 11784和11785,用于非接触智能卡的ISO 10536(Close coupled cards)、ISO 15693(Vicinity cards)、ISO 14443 (Proximity cards),用于集装箱识别的ISO 10374等。有些标准正在形成和完善之中,比如用于供应链的ISO 18000无源高频(860Mhz~930Mhz载波频率)部分的C1G2标准不久会正式推出,我国自己的国家标准快在今年年末会出台。下面对这几个标准加以简述。

3.RFID标准简述




3.1 ISO 11784和ISO 11785


ISO 11784和11785分别规定了动物识别的代码结构和技术准则,标准中没有对应答器样式尺寸加以规定,因此可以设计成适合于所涉及的动物的各种形式,如玻璃管状、耳标或项圈等。


技术准则规定了应答器的数据传输方法和阅读器规范。工作频率为134。2KHz,数据传输方式有全双工和半双工两种,阅读器数据以差分双相代码表示。应答器采用FSK调制,NRZ编码。


由于存在较长的应答器充电时间和工作频率的限制,通信速率较低。


3.2 ISO 10536、ISO 15693和ISO 14443


ISO 10536标准主要发展于1992到1995年间,由于这种卡的成本高,与接触式IC卡相比优点很少,因此这种卡**在市场上销售。


ISO 14443和ISO 15693标准在1995年开始操作,单个系统于1999年进入市场,两项标准的完成则是在2000年之后。二者皆以13。56MHz交变信号为载波频率:ISO15693读写距离较远,当然这也与应用系统的天线形状和发射功率有关;而ISO 14443 读写距离稍近,但应用较广泛,目前的*二代电子身份证采用的标准是ISO 14443 TYPE B协议。


ISO14443定义了TYPE A、TYPE B两种类型协议。通信速率为106kbits/s,它们的不同主要在于载波的调制深度及位的编码方式。


从PCD向PICC传送信号时,TYPE A采用改进的Miller编码方式,调制深度为**的ASK信号;TYPE B则采用NRZ编码方式,调制深度为10%的ASK信号。


从PICC向PCD传送信号时,二者均通过调制载波传送信号,副载波频率皆为847KHz。TYPE A采用开关键控(On-Off keying)的Manchester编码;TYPE B采用NRZ-L的BPSK编码。


TYPE B与TYPE A相比,由于调制深度和编码方式的不同,具有传输能量不中断、速率高、抗干扰能力强的优点。


ISO 15693标准规定的载波频率亦为13。56MHz,VCD和VICC全部都用ASK调制原理,调制深度为10%和**,VICC必须对两种调制深度正确解码。


从VCD向VICC传送信号时,编码方式为两种:“256出1”和“4出1”。二者皆以固定时间段内以位置编码。这两种编码方式的选择与调制深度无关。当“256出1”编码时,10%的ASK调制**在长距离模式中使用,在这种组合中,与载波信号的场强相比,调制波边带较低的场强允许充分利用许可的磁场强度对IC卡提供能量。与此相反,阅读器的“4出1”编码可和**的ASK调制的组合在作用距离变短或在阅读器的附近被屏蔽时使用。


从VICC向VCD传送信号时,用负载调制副载波。电阻或电容调制阻抗在副载波频率的时钟中接通和断开。而副载波本身在Manchester编码数据流的时钟中进行调制,使用ASK或FSK调制。调制方法的选择是由阅读器发送的传输协议中FLAG字节的标记位来标明,因此,VICC总是支持两种方法:ASK(副载波频率为424KHz)和FSK(副载波频率为424/484KHz)。数据传输速率的选择同样由FLAG中的位来表明,而且必须两种速率都支持:高速和低速。这两种速率根据采用的副载波速率不同而略有不同,采用单副载波时低速为6。62kbits/s,高速为26。48kbits/s;采用双副载波时则分别为6。67kbits/s和26。69kbits/s。

4.RFID*技术优势



可见,ISO 15693应用加灵活,操作距离又远,重要的是它与ISO 18000-3兼容,了解ISO 15693标准对将来了解我国的国家标准是有助益的,因为我国的国家标准肯定会与ISO 18000大部分兼容。


如果在同一时间段内有多于一个的VICC或PICC同时响应,则说明发生冲撞。RFID的核心是防冲撞技术,这也是和接触式IC卡的主要区别。ISO 14443-3规定了TYPE A和TYPE B的防冲撞机制。二者防冲撞机制的原理不同:前者是基于位冲撞检测协议,而TYPE B通过系列命令序列完成防冲撞;ISO 15693 采用轮寻机制、分时查询的方式完成防冲撞机制,在标准的*三部分有详细规定。


防冲撞机制使得同时处于读写区内的多张卡的正确操作成为可能,只用算法编程,读头即可自动选取其中一张卡进行读写操作。这样既方便了操作,也提高了操作的速度。


如果与硬件配合,可用一些算法快速实现多卡识别,比如TI公司的R6C接口芯片有一个解码出错指示引脚,利用它可以快速识别多卡:当冲撞产生时引脚电平发生变化,此时记录下用来查询的低UID位,然后在此低位基础上增加查询位数,直到没有冲撞发生,这样就可以识别出所有卡片。


(1)ISO 10374


ISO 10374标准说明了基于微波应答器的集装箱自动识别系统。


应答器为有源设备,工作频率为850MHz~950Mhz及2。4GHz~2。5GHz。只要应答器处于此场内就会被活化并采用变形的FSK副载波通过反向散射调制做出应答。信号在两个副载波频率40kHz和20kHz之间被调制。


此标准和ISO 6346共同应用于集装箱的识别,ISO 6346规定了光学识别,ISO 10374则用微波的方式来表征光学识别的信息。


(2)ISO 18000


ISO 18000是一系列标准。此标准是目前新的也是热门的标准,原因是它可用于商品的供应链,其中的部分标准也正在形成之中。表2是ISO 18000标准的内容。


其中ISO 18000-6基本上是整合了一些现有RFID厂商的产品规格和EAN-UCC所提出的标签架构要求而订出的规范。它只规定了空气接口协议,对数据内容和数据结构无限制,因此可用于EPC。


实际上,若采用ISO 18000-6对空气接口的规定加上EPC系统的编码结构再加上ONS架构,就可以构成一个完整的供应链标准。


花好还需绿叶扶


应用好RFID技术,除了接口的设计,还有天线的设计、数据库管理技术等,这在以后的实际应用中会不断地积累经验,不断地改进。因为这项技术的应用前景决定了它的技术和标准的日臻完善。近年来,射频识别已经逐步发展成为一个立的跨学科的领域,这个领域与其他传统学科不同,它将大量来自完全不同领域的技术综合到一起:如高频技术、电磁兼容性、半导体技术、数据保护和密码学、电信、制造技术和许多领域。所以在这个领域要做的事很多,要探讨的问题也很多,但这一切都是值得努力去做的。


小资料2:数字调制技术


数字调制是指用数字数据调制模拟信号,主要有三种形式:移幅键控法ASK、移频键控法FSK、移相键控法PSK。


幅度键控(ASK):即按载波的幅度受到数字数据的调制而取不同的值,例如对应二进制0,载波振幅为0;对应二进制1,载波振幅为1。调幅技术实现起来简单,但容易受增益变化的影响,是一种低效的调制技术。在电话线路上,通常只能达到1200bps的速率。


频移键控(FSK):即按数字数据的值(0或1)调制载波的频率。例如对应二进制0的载波频率为F1,而对应二进制1的载波频率为F2。该技术抗干扰性能好,但占用带宽较大。在电话线路上,使用FSK可以实现全双工操作,通常可达到1200bps的速率。


相移键控(PSK):即按数字数据的值调制载波相位。例如用180相移表示1,用0相移表示0。这种调制技术抗干扰性能好,且相位的变化也可以作为定时信息来同步发送机和接收机的时钟,并对传输速率起到加倍的作用。


深圳市铨顺宏科技有限公司作为RFID品牌--ThingMagic代理商,在向各大运营商、集成商提供ThingMagic全系列产品的同时,公司也一直以的技术团队,的服务,优惠的价格,为广大客户提供多的RFID设备解决方案和高质量的售后服务。公司配合各大运营商、集成商已成功的将ThingMagic RFID设备,运用在生产制造、仓储管理、航空航运、服装零售、防伪溯源等多个领域各种应用中。



深圳市铨顺宏以先进科技为核心,以用户需求为导向,秉承合作共赢的经营理念;专注专心,致力成为中国物联网行业,基于技术,品质,服务,诚信四位一体的 的RFID设备与技术服务提供商。


深圳市铨顺宏科技有限公司专注于高频RFID读写器,RFID读写器,电子标签等

免责声明: 八方资源网为互联网信息服务提供者,所有的信息均有发布者提供,如您发现信息有违规/侵权,请立即投诉举报

相关资讯

查看更多
资讯分类
商务服务 污水处理 机械 传媒 机床 五金 农业 工程机械 焊接切割 泵阀 热泵 农机 汽车 汽车用品 汽配 汽修 通信 电子 暖通空调 电气 广电 印刷 纸业 丝印特印 灯饰 安防 消防 过滤 耐火材料 环保 LED 添加剂 食品机械 仪器仪表 太阳能 包装 水工业 加工 二手设备 工艺礼品 古玩 服装 美容美发 服饰 制鞋 家电 家具 运动休闲 影音 酒店 家居 办公 音响灯光 农化 水果 养殖 皮具 教育装备 玩具 零食 食品 二手 IT 建材 小家电 卫浴 陶瓷 超硬材料 化工 橡胶 塑料 钢铁 表面处理 冶金 石油 能源 纺织 房地产 皮革 涂料 石材 创业 项目 生活服务 教育 船舶 维修 广告 交通运输 医疗 代理 物流 图片 展会 咨询 库存积压
八方资源网 资讯