PSS含有两x官能团,磺酸又是强酸,所以它不仅可以作为分散剂,改善PEDOT的溶解性,而且可以作为平衡电荷的掺杂剂,提高PEDOT的电导率。将PSS溶解于一定量的去离子水中,向其中滴加入EDOT单体,缓慢搅拌。不同PEDOT核壳分散体的制备总结聚3,4-乙撑二氧s吩(PEDOT)由于其高导电性、低能隙、优异的薄膜透明性以及环境稳定性在抗静电涂层、光电子器件、电容器、电磁屏蔽、传感器、金属防腐等领域具有广阔的应用前景,然而其不溶问题限制了其应用。滴加盐酸控制体系pH值范围为2~3。然后慢慢滴入(NH4)2S2O8与Fe2(SO4)3混合溶液,快速搅拌反应24h。分别用阴阳离子交换树脂交换无机盐离子4h,得到PEDOT/PSS深蓝色溶液。
考虑PEDOT:PSS材料本身的特性和硅表面结构光学管理后,硅与背金属电极界面的接触情况成为了制约电池效率提升的主要因素,硅/金属的直接接触会导致界面处形成肖特基势垒,对电子传输的阻碍作用较大,同时界面处严重的复合造成了载流子的损失。该项研究为未来**-无机复合纳米热电材料制备展示了新的方法和思路。基于此,选用氧化锌作为电子选择性材料,将其用于界面处形成金属-介质-半导体结构,并对氧化锌进行Li掺杂调节其功函数进一步减小或消除界面势垒。另外,对硅表面通过本征非晶硅层钝化,这样既能钝化硅又能改善电接触。并结合硅金字塔陷光结构,较终实现**过15%的电池转换效率。
?PEDOT:PSSHTL
PEDOT:PSS HTL在器件中主要起着收集和传输来自钙钛矿光吸收层的空穴的作用[6]。尽管PEDOT:PSS HTL具有透光率优异和制备工艺简单等优点, 但是依然存在两个关键问题[7, 8, 9, 10, 11]有待进一步解决。其一, PEDOT:PSS HTL的导电性能相对较弱, 在其内部电荷无法高效地传输, 导致HTL和钙钛矿层界面处出现电荷累积, 加大了器件的漏电流[7]; 其二, PEDOT:PSS HTL表面缺少钙钛矿形核和生长的有利位置以及存在钙钛矿溶液的润湿性问题, 较难获得晶粒尺寸大且覆盖率高的钙钛矿层[8, 11]。为此, 研究人员尝试引入添加剂对PEDOT:PSS HTL进行修饰。目前已有少量的添加剂用于PEDOT:PSS HTL, 如二甲j亚砜(DMSO)[7]、聚氧h(PEO)[9]、甲磺酸(MSA)[10]和氧化石墨(GO)[11], 这些添加剂解决上述两个问题的侧重点有所不同。例如, DMSO主要是提升PEDOT:PSS HTL的导电性能, 其原因在于DMSO能弱化PEDOT分子链和PSS分子链之间的交互作用, 进而促使PEDOT富集相的形成; GO主要是通过改善钙钛矿溶液在PEDOT:PSS HTL表面的润湿性, 达到降低钙钛矿非均匀形核能的目的。然而, 目前鲜有同时将两种不同功能的添加剂用于修饰PEDOT:PSS HTL的报道。此外, **级电容器和导电薄膜等领域的研究表明, 具有*特电学和机械性能的碳纳米管(CNTs)能改进PEDOT:PSS膜的导电性能[12, 13]。其缺点主要是由于PEDOT本身不溶不熔的性质而不能单独成膜,要加入PSS形成分散液后方能采用物理涂覆法。同样值得借鉴的是Zhang等[14]的研究工作, 他们发现将CNTs掺入钙钛矿层能促进晶粒的生长。
无锡畅宏科技有限公司专注于防静电液,无锡防静电液,抗静电剂,导电液,水性防静电液等