1-3吨小型生活污水处理设备
价格只需20000元就可买到我们的1-3吨小型生活污水处理设备。
公司生产农村用、小区用、社区用、办公楼用、服务区用、加油站用、收费站用、厕所用、化粪池用、光伏电站用、变电站用、厂区用生活污水处理设备。
出水达到国家城镇污水排放标准。
厂家免费送货到现场并派技术上门安装。
生物膜的培养及驯化
生物氧化池中采用自然培菌法培养生物膜。培菌时, 先向氧化池内注入生活污水至填料上表面, 再向氧化池内加入10m3过滤后的粪便水, 开启罗茨鼓风机对氧化池进行闷曝。经过一个星期的闷曝气后, 填料上开始出现黏稠状的生物膜。接下来打开氧化池的进水阀门, 连续向氧化池内进水, 进水量由2m3、4m3、6m3 逐步增大。连续进水时经常观察氧化池内水面的颜色、悬浮物含量、曝气及气泡等情况。水温在20 ~ 25#时, 经过30~ 50d 左右的培养, 可完成氧化池内的生物膜培养, 此时氧化池处理水量可达到设计处理量( 1#、2#生物氧化池单池设计处理量为30m3/h,3#、4#、5#生物氧化池单池设计处理量为40m3/h)。
如果要缩短生物膜的培养时间,可用本站其他生物氧化池底的沉积污泥作为菌种进行接种培菌。培菌时先向氧化池内注入10~ 20m3 其他氧化池内的沉积污泥作为菌种, 再向氧化池内注入10~ 15m3 过滤后的粪便水, 使氧化池在高BOD5 负荷下挂膜。继续向氧化池内添加生活污水至填料以上20cm左右, 进行闷曝, 闷曝时间为2d。闷曝2d后开始小水量进水, 进水量从小逐步加大到设计处理量。采用接种培菌, 一般在14~ 0d 左右就能完成氧化池内生物膜的培养。
水力停留时间对运行效果的影响
生物接触氧化法处理污水时, 氧化分解速度或硝化速度对接触时间的依赖性很大。微生物对物的转化过程与微生物机体的化学过程紧密联系。所以, 无论是将复杂的物分解氧化为简单的无机物, 或者是比较简单的分解氧化产物合成复杂的细胞物质, 都需要一定的时间。从降低废水物质含量这一角度来说, 物转移到生物膜所需的时间是重要的。这个转移实质上是微生物对废水中的物吸着吸附过程。这个转移一般能够在废水同生物膜接触后数分钟内完成。但是, 生物处理对废水中物的净化作用, 不仅是由于生物吸附与吸着作用, 重要的是吸附吸着后的氧化分解和细胞合成作用, 使物无机化。被吸附在生物膜上的物, 经氧化分解与合成全部转化为稳定物质所需时间较长(数小时乃至数十天)。因此, 处理时间越长, 微生物对物的吸着、吸附、降解作用越, 处理水BOD 残留率愈小, 处理效果较好; 反之亦然。
污水处理站1#、2# 生物接触氧化池处理量为 20~ 30m3 /h时, 污水与生物膜的接触时间为3~ 5h; 3#、4#、5#生物接触氧化池处理水量为30 ~ 40m3/h时, 污水与生物膜的接触时间为3~ 4h。生物氧化池在运行过程中遇到天气变化, 水温较低时, 通常采用降低氧化池的处理量, 延长污水与生物膜的接触时间来确保氧化池对污染物的分解效率。
生物氧化池内的曝气设备及曝气的作用
生物氧化池内曝气设备有罗茨鼓风机、曝气管和曝气头。其曝气头采用充氧、经久耐用的微孔橡胶模曝气头。氧化池内曝气作用主要有以下3个方面的作用:
1) 充氧: 生物接触氧化法主要是利用好氧性细菌完成生物净化作用的方法。微生物的氧化、合成内源呼吸需要氧。所以除了营养物质外, 氧是保证微生物正常生长的一个重要条件。供氧使氧化池内的溶解氧控制在一个相当的水平上。
2) 充分搅拌, 形成紊流: 从流体力学的观点来看, 供氧使池内水流充分搅动, 形成紊流, 紊流越甚, 被处理水与生物膜的接触效率越高, 传质效率越好, 从而提高处理效果。
3) 防止填料发生堵塞, 促进生物膜新: 供气的搅动作用使填料上衰老的生物膜及时剥落, 防止填料堵塞。
A/O工艺
1.基本原理
A/O是Anoxic/Oxic的缩写,它的优越性是除了使污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。
A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性物水解为酸,使大分子物分解为小分子物,不溶性的物转化成可溶性物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。
2.A/O内循环生物脱氮工艺特点
根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:
(1)。该工艺对废水中的物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。
(2)流程简单,投资省,操作费用低。该工艺是以废水中的物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。
(3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和物的去除率分别为62%和36%,故反硝化反应是为经济的节能型降解过程。
(4)容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。
(5)缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以**程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮(内循环)工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。
A/O工艺的缺点
1.由于没有独立的污泥回流系统,从而不能培养出具有*特功能的污泥,难降解物质的降解率较低;
2、若要提高脱氮效率,必须加大内循环比,因而加大了运行费用。另外,内循环液来自曝气池,含有一定的DO,使A段难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%。
3、影响因素
水力停留时间(硝化>6h,反硝化<2h)污泥浓度MLSS(>3000mg/L)污泥龄(>30d)N/MLSS负荷率(<0.03)进水总氮浓度(<30mg/L)
潍坊鲁盛水处理设备有限公司专注于一体化生活污水处理装置,地埋式生活污水处理装置,农村生活污水处理设备等