不锈钢断裂
不锈钢主要由铁-铬、铁-铬-镍合金和其它改善力学性能与抗蚀能力的元素组成。不锈钢防蚀是因为在金属表面生成了可防止进一步氧化的铬氧化物—不可渗透层。
因此,不锈钢在氧化气氛中能防止腐蚀并使铬氧化物层得到强化。但在还原气氛中,铬氧化层受到损害。抗蚀性随着铬、镍含量增加而增加。镍可全面提升铁的钝化性。
增加碳是为了改善力学性能和保证奥氏体不锈钢性能的稳定。一般说来,不锈钢利用显微组织进行分类。
马氏体不锈钢。属于铁-铬合金,可进行奥氏体化和后序热处理生成马氏体。通常含铬12%,含碳0.15%。
铁素体不锈钢。含铬约14%~18%,碳0.12%。因为铬是铁素体的稳定剂,奥氏体相被**过13%的铬彻底抑制,因而是完全的铁素体相。
奥氏体不锈钢。镍是奥氏体的强稳定剂,因此,在室温、低于室温或高温状态下,镍含量为8%,铬含量为18%(300型)能使奥氏体相非常稳定。奥氏体不锈钢类似于铁素体型,不能通过马氏体转变而硬化。
铁素体和马氏体不锈钢特征,如晶粒尺寸等与同级别的其它铁素体钢和马氏体钢相似。
奥氏体不锈系FCC结构,在冷冻温度下都不可能解理断裂。大型件冷轧80%后,310型不锈钢有较高的屈服强度和缺口敏感性,甚至在温度低至-253℃还具有1.0的缺口敏感性比。因此,可用于导弹系统的液氢贮存箱。相似的301型不锈钢可用于温度低至183℃的液氧贮存箱。但在这些温度以下是不稳定的,如发生任何塑性变形,不稳定的奥氏体都会变成脆性的非回火马氏体。绝大多数奥氏体钢用于防腐环境,被加热至500~900℃温度范围,铬碳化物会沉淀在奥氏体晶界,结果使晶界附近范围内的铬层被完全耗尽。该部位非常容易受到腐蚀和局部腐蚀,如果存在应力,还可导致晶脆性断裂。
为了减轻上述危害,可加入少量性能强于铬碳化物的元素,例如钛或铌,与碳形成合金碳化物,防止铬被耗尽和随之而致的应力腐蚀裂纹。常称这种处理为“稳定化处理”。
奥氏体不锈钢也常用于高温,如压力容器,防止和满足抗腐蚀和抗蠕变。某些钢种因为在焊后热处理和高温环境下对热影响区及其附近的裂纹十分敏感。所以,当焊接再加热时,受高温作用,铌或钛碳化物会在晶粒内和晶界沉淀,导致裂纹产生而影响使用寿命,这必须给予高度重视。
超声波探伤的检查方法 到目前为止,已经应用或者提议应用的利用超声波探伤进行无损检查的方法。 2.裂纹的评价和应用实例2.1聚焦超声波 作为在现场可以方便测量的方法而广泛应用的是相对灵敏度测长法。这种方法是通过探头前后扫查时的回波高度**过距离—波幅曲线(distance amplitude curve, DAC)时阈值前后的波束路程来测量裂纹高度的一种方法。这种方法的测量精度主要取决于超声波波束的宽度,通过使用超声波波幅较窄的聚焦探头,可提高裂纹自身高度的测量精度。 在实验室应用5MHz,折射角45°的聚焦探头,以直径1mm长横孔DAC为基础,使阈值变化时的焊接裂纹等的缺陷高度的测量精度和常规探头测量结果的比较得出:在使用聚焦探头的情况下,阈值设计的越低,精度越好,如果阈值为DAC的-25dB,误差的平均值及标准偏差都接近零,可见聚焦探头可以高精度的进行测量。之所以通过设计低的阈值能使精度提高,是由于在缺陷的端部产生的散射波也被检测系统作为缺陷的反射波测量出的缘故。
疲劳裂纹、应力腐蚀裂纹等的缺陷高度测量经常使用端部回波法。这种方法是收集裂纹端部的散射波回波,然后由其波束路程和探头的折射角来测裂纹自身高度。使用45°折射角聚焦探头时,散射回波变得容易发现,而且测量精度也比常规探头增高。在实验室,对于铬钼钢产生的裂纹,通过使用常规探头和聚焦探头的上部回波表现形式的检测比较表明,使用聚焦探头时精度提高50%。对奥氏体系列不锈钢配管发生的自身高度0.5~17mm的尖端部位呈复杂形状的晶间应力腐蚀裂纹,通过利用聚焦探头的端部回波法,其裂纹自身高度曾以低于±1mm的精度进行了测量。 端部回波法测量本身简单,但回波的判别方法依赖于检查技术人员的水平和经验,存在客观性差的问题。
广分检测技术(苏州)有限公司专注于FDA认证,ZDHC检测认证,安全帽检测,防护服检测,江苏防霉检测,江苏抗菌检测,皮肤致敏检测,生物降解检测,生物相容性检测等