文章重点介绍采用乙烯基**氧基硅烷(VTMOS)对SiO2疏水改性,通过自组装法,将改性SiO2接枝在商业PVDF(聚偏氟乙烯)膜表面,使其表面达到**疏水。利用场发射电子显微镜、红外光谱仪、接触角测量仪及毛细流孔径分析仪等仪器对改性前后膜的表面形貌、化学组成、接触角及孔径变化等性能参数进行表征。结果表明,VTMOS不仅对SiO2疏水改性,还通过自身的水解缩聚反应,生成了规整圆球状的聚乙烯基倍半硅氧烷(PVSQ)微粒,纳米级SiO2分布于微米级PVSQ表面,在改性膜表面构造了多层次微/纳米粗糙表面,在低表面能疏水基团乙烯基和甲氧基的共同作用下,成功实现了**疏水改性,改性膜水接触角达到159.5°,滚动角降至8.1°。以NaCl、HA和CaCl2混合溶液为进料液,对商业PVDF膜和改性膜进行了长期直接接触式膜蒸馏(DCMD)实验,探究其抗污染性能。结果表明,改性膜适用于长期DCMD实验,并表现出比商业PVDF膜更稳定的通量,截盐率始终大于99.99%,具有良好的稳定性和抗污染性能。
膜蒸馏技术(membrane distillation,MD)是一种将传统蒸馏过程与膜分离技术相结合,以疏水微孔膜为介质,由疏水膜两侧温差引起的蒸汽压差作为推动力的新型液体分离技术。相比于传统蒸馏过程,MD操作温度较低,可利用太阳能等低品位余热进行操作,同时,与其他压力驱动膜分离过程,如反渗透、纳滤相比,由于MD较低的操作压力,不需使用高压泵或高压容器等昂贵组件,降低了操作成本,此外,对原溶液中的离子、分子等非挥发性溶质理论上截留率可以达到**,因此,MD可以广泛用于生活废水、工业废水的处理以及医药、食品加工等方面。
在MD过程中,疏水膜作为冷热两侧的传质通道和物理屏障,只允许蒸汽通过,是MD的核心部分。保持疏水膜膜孔干燥,不被堵塞,对保证MD通量和截盐率有着至关重要的作用。目前,MD过程中应用的膜主要是商业微滤膜,由疏水聚合物,如聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)或聚丙烯(PP)等制备而成。但是,在实际操作过程中,PVDF膜孔易被润湿或被污染物堵塞,降低MD的效率,抑制了MD的广泛应用。近年来研究表明,将PVDF膜表面改性为**疏水,可有效防止膜污染现象发生。目前应用的抗污染技术主要有原料液的预处理以及对膜进行冲洗,与本文**疏水抗污染技术相比,对原料液预处理可能会提高膜的污染率,对膜进行冲洗则会造成回收率降低,操作压力升高以及膜的使用寿命缩短。
**疏水表面一般指与水的接触角大于150°,且滚动角小于10°的表面,具有自清洁、防水、防冰、抗氧化、减阻等多种*特的表面性能。制备**疏水表面的灵感来自于自然界中存在的**疏水表面,如荷叶或昆虫翅膀等。**疏水表面的制备,主要总结为以下两种途径:构造多层次的微/纳米粗糙表面,或在具备一定粗糙程度的表面上修饰低表面能物质。近年来,已经报道了多种构造**疏水表面的方法,如溶胶-凝胶法、模板法、静电纺丝法、等离子体处理法以及化学气相沉淀法等。但是,上述方法易受限于复杂的制备步骤,昂贵的技术成本或只能制备较小样品。自组装技术作为一种工艺简单,成本低廉的方法,可广泛用于制备**疏水表面。
本实验采用自组装法开发了一种简单的将商业PVDF表面改性为**疏水的方法。采用乙烯基**氧基硅烷(vinyltrimethoxysilane,VTMOS)对二氧化硅(SiO2)进行疏水改性,将改性SiO2接枝在商业PVDF膜表面,VTMOS自身水解缩聚反应生成了规整圆球状的聚乙烯基倍半硅氧烷(polyvinylsilsesquioxane,PVSQ),二者共同构造了多层次微/纳米粗糙表面,与此同时,在改性膜表面分布有低表面能疏水基团乙烯基、甲氧基,成功制备**疏水表面。之后对改性膜进行了长期直接接触式膜蒸馏(direct contact membrane distillation,DCMD)实验,考察了其抗污染性能。
本文采用VTMOS疏水改性SiO2,通过自组装法将其接枝在商业PVDF膜表面,利用SiO2和VTMOS自身水解缩聚反应形成的球形PVSQ微粒构造了多层次微/纳米粗糙结构,同时,在低表面能疏水基团乙烯基和甲氧基的共同作用下,成功将商业PVDF膜表面改性为**疏水。
廊坊浩北化工有限公司专注于生物颗粒除焦剂,锅炉阻垢剂,反渗透阻垢剂,抑尘剂,锅炉除垢防垢剂等