3 结果分析与讨论
3.1 COD的去除效果对比
CASS工艺和SMBBR工艺对COD的去除效果对比见图2。
图2 CASS和SMBBR对COD的去除效果
从图2可以看出,进水的COD在970~1 460
mg/L,水质变化波动较大,随着反应的不断进行,CASS和SMBBR工艺对COD的去除率分别为65.88%~78.13%和63.12%~80.52%,平均去除率分别为72.54%和72.81%。两种工艺对COD的去除率相差不大,但是SMBBR在进水COD较高时其对应的去除率**CASS工艺,主要是因为在SMBBR工艺中,加大水量时,生物填料依然能够保留大量的生物膜,使SMBBR系统的抗冲击性增强。在前13
d里CASS池的出水效果优于SMBBR工艺,分析原因是由于进水COD不断降低,SMBBR系统中微生物降解**物的速率较小,其降解能力不能充分发挥所致。在实验后期,随着进水COD的不断增大,促进了SMBBR载体上的生物膜微生物的生长,提高了降解速率,故COD去除率得到了提高[7]。和CASS工艺相比,SMBBR具有较高的COD负荷率,较高的空气氧利用率且微生物的食物链长等优势。
3.2 NH3-N的去除效果对比
CASS工艺和SMBBR工艺对NH3-N的去除效果对比见图3。
图3 CASS和SMBBR对NH3-N的去除效果
从图3可以看出,进水的NH3-N在310~370
mg/L,CASS和SMBBR工艺对NH3-N的去除率分别为25.53%~29.77%和29.17%~33.3%,平均去除率分别为27.61%和29.96%。结果表明,SMBBR脱氮效果略好于CASS工艺。这两种工艺对NH3-N均有一定的去除效果,但是由于进水NH3-N较高,碳源不足,故二者对NH3-N的去除率并不是很高。稳定运行后,SMBBR出水的NH3-N始终保持在260
mg/L以下,低达到220
mg/L。与CASS工艺相比,废水与SMBBR填料上的生物膜接触得更加频繁,悬浮填料有利于硝化细jun的聚集,载体上含有丰富的高活性硝化菌和亚硝化菌,这些细jun较易吸附生长于SDC-03型载体表面,可避免因水力冲刷而流失,系统的生态结构在载体上保持着较稳定的动态平衡,故SMBBR工艺对NH3-N的去除率**CASS工艺。但是在*11天时,CASS工艺的去除率**SMBBR工艺,分析原因是由于随着反应的不断进行,SMBBR中填料的亲水性不断增强,填料呈现中间悬浮状态,动力消耗减少,曝气量相对减小,溶氧相对降低,较低的溶氧**被活性更强的异养菌利用以降解**物,而无法满足硝化菌进行硝化反应所需,直接导致出水的NH3-N较高,在重新调整曝气量后,出水的NH3-N有所降低。
3.3 TP的去除效果对比
CASS工艺和SMBBR工艺对TP的去除效果对比见图4。
图4 CASS和SMBBR对TP的去除效果
从图4可以看出,进水的TP在37.65~45.76
mg/L,随着反应的不断进行,CASS和SMBBR工艺对TP的去除率分别为66.09%~73.60%和79.14%~85.75%,平均去除率分别为69.27%和82.71%。从图中可以明显看出,SMBBR工艺对发酵类制药废水TP的去除效果优于CASS工艺。分析原因是由于CASS反应池内可形成厌氧、缺氧、好氧交替的环境,具有一定的脱氮除磷功能,但是CASS池回流比的大小影响了释磷菌的数量和除磷的效果[8],反应器在运行过程中厌氧环境出现的时间很短,厌氧阶段并不明显,只是在沉淀阶段的后期或排水阶段出现了厌氧段,而且由于可利用的溶解性**基质不足,使得聚磷菌没有完全释磷[9],而厌氧段的释磷量与好氧段的吸磷量具有良好的正相关性[10],从而使其在下一周期中的好氧阶段吸磷效果差。而SMBBR填料上附着生长的微生物为世代时间长、生长缓慢的细jun创造了良好的生长环境[11]。由于聚磷菌、硝化菌、反硝化菌及多种其他的微生物共同生长在一个系统内,SMBBR系统有良好的厌氧→缺氧→好氧这样的一个过程,能将聚磷微生物经过厌氧释磷后直接进入生化效率较高的好氧环境,聚磷菌在厌氧区形成的吸磷动力可以充分利用,填料上的微生物可以完整地经过厌氧→好氧环境并完成磷的厌氧释放和好氧吸收过程,使磷的去除率得以提高。正是由于这些特点,使SMBBR系统的除磷效果优于CASS系统,且抗TP冲击能力比CASS工艺更有优势。
山东泰山行星环保科技有限公司专注于布袋除尘,脱硫塔,污水处理设备,烟气治理,大气污染控制与治理等